Quest Chapter 07a

#	Problem	Hint
1	A lunar vehicle is tested on Earth at a speed of 10 km/h. When it travels this fast on the moon, how does its momentum compare to the momentum on Earth?	Assume the speed is the same on the moon as on the Earth.
	 the same as on Earth less than on Earth None of these greater than on Earth 	What is the definition of momentum? $\rho = mv$
		Do these change on the moon?
2	(part 1 of 4) Calculate the momentum for a 0.1 kg rifle bullet traveling 300 m/s.	Substitute and solve. $\rho = mv$
3	(part 2 of 4) What momentum does a 1100 kg automobile traveling 0.3 m/s (a few miles per hour) have?	Substitute and solve.
4	(part 3 of 4) What momentum does a 40 kg person running 9 m/s (a fast sprint) have?	Substitute and solve.
5	(part 4 of 4) What momentum does a 14000 kg truck traveling 0.03 m/s (a slow roll) have?	Substitute and solve.
6	Which of the following undergoes the greatest change in momentum if the baseballs have the same speed just before being caught and just before being thrown? 1. A baseball that is thrown	Consider each part: throw, catch, throw. What changes in the last
	 A baseball that is caught A baseball that is caught and then thrown back 	situation: Caught then Thrown?
		How do the momenta compare for each part?
7	If a 0.144 kg baseball has a momentum of 6.17 kg·m/s as it is thrown from home to second base, what is its velocity?	Substitute and solve. $\rho = mv$

#	Problem	Hint
8	If you throw a raw egg against a wall, you'll break it, but if you throw it with the same speed into a sagging sheet it won't break. Why?	Use the impulse equation when considering this question. Impulse = Ft
	 The impact time when the egg strikes a sagging sheet is long, so the impact force is small. The breaking egg causes a larger impact 	Which variable remains the same in both examples?
	time, decreasing the force. 4. The velocity of the egg decreases faster in the sheet than on the wall.	Which variable increases in the sheet example?
		Which variable decreases because of that?
9	What is the impulse needed to stop a 10 kg	Remember: Impulse = Ft,
10		but also Impulse = $\Delta(mv)$.
10	(part 1 of 3) A 15000 kg tank moving at 10 m/s is	Remember: Ft = Impulse
	brought to a halt in 0.5 s by a reinforced-	And, Impulse = $\Delta(mv)$
	steel tank barrier. What impulse was imparted to the tank?	So, $Ft = \Delta(mv)$
11	Answer in units of kgm/s	
11	What is the average net force exerted by the	Use the impulse equation
	tank on the barrier?	when considering this
12	(part 3 of 3)	Total momentum change
	What is more important in determining the	oquale A(my) which is
	amount of damage an object sustains in a	$Equals \Delta(mv)$ which is
	1. Both of these	impuise. And, $r = \Delta(mv)$.
	2. None of these	So what do you have when
	 the total momentum change the total momentum change per unit time 	vou divide by time?
		So, you choices are between $\Delta(mv)$ and what?

#	Problem	Hint
13	How does impulse differ from force?1. Force produces momentum; impulse produces acceleration.2. Momentum is larger than force.3. Force is usually larger than momentum.	Consider the Second Law of Motion and the impulse equation.
	 None of these Force produces acceleration; impulse produces momentum. Force produces acceleration; impulse produces change in momentum. 	You are comparing the effect the two things have. This effect is seen on the other side of the equal sign.
14	 Why might a wine glass survive a fall onto a carpeted floor but not onto a concrete floor? 1. The decrease of momentum of the wine glass in the carpet is more than that in the concrete. 2. The decrease of velocity of the wine glass in the carpet is less than that in the concrete. 3. Since the carpet is softer than the concrete and the force of impact is reduced by the extended time of impact. 4. None of these 5. The decrease of momentum of the wine glass in the carpet is less than that in the concrete. 6. The decrease of velocity of the wine in the 	Consider the impulse equation for this problem. What is the difference in the two situations? How does that affect the glass?
15	A 0.54 kg football is thrown with a velocity of 18 m/s to the right. A stationary receiver catches the ball and brings it to rest in 0.019s. What is the force exerted on the receiver?	Use the impulse equation: $Ft=\Delta(mv)$.
16	A football punter accelerates a 0.57 kg football from rest to a speed of 8.3 m/s in 0.19s. What constant force does the punter exert on the ball?	Use the impulse equation.

#	Problem	Hint
17	A 62.3 kg astronaut is on a space walk when the tether line to the shuttle breaks. The astronaut is able to throw a 12.0 kg oxygen tank in a direction away from the shuttle with a speed of 13.0 m/s, propelling the astronaut	What is the momentum of the tank and the astronaut before the tank is thrown?
	back to the shuttle. Assuming that the astronaut starts from rest, find the final speed of the astronaut after throwing the tank.	What is the momentum of the tank after it is thrown?
		Use the Law of Conservation of Momentum to find the momentum of the astronaut.
		Now, use the definition of momentum to find the speed of the astronaut.
18	Two blocks of masses M and 3M are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them. A cord holding them together is burned, after which the block of mass 3M moves to the right with a speed of 2.2 m/s. What is the speed of the block of mass M?	Could you that through the spring each block pushes on the other? (Third Law of Motion) So, the forces on each block are what?
		Is the impulse time the same for both blocks?
		Remember that momentum is conserved.

#	Problem	Hint
19	Railroad car A rolls at a certain speed and makes a perfectly elastic collision with car B of the same mass. After the collision, car A is observed to be at rest.	Remember that momentum is conserved.
	How does the speed of car B compare with the initial speed of car A? 1. The speed of car B is more than the initial speed of car A. 2. The speed of car B is less than the initial	But, what do we know about the initial velocity of car B?
	speed of car A.3. None of these.4. The speed of car B is the same as the initial speed of car A.	
20	Suppose the entire population of the world gathers in one spot and, at the sounding of a prearranged signal, everyone jumps up. While all the people jump up, does the	Do the jumpers experience a change of momentum?
	 Earth gain momentum in the opposite direction? 1. Yes, the Earth recoils, like a rifle firing a bullet, with a change in momentum equal to and opposite that of the people. 2. It depends. 3. No. 4. Yes; because of its much larger inertial mass, however, the change in momentum of Earth ismuch less than that of all the jumping people. 	Remember that momentum is conserved.
21	A person attempts to knock down a large wooden bowling pin by throwing a ball at it. The person has two balls of equal size and mass, one made of rubber and the other of	Remember that momentum is conserved.
	putty. The rubber ball bounces back, while the ball of putty sticks to the pin. Which ball is most likely to topple the bowling pin? 1. the rubber ball	What is the change in momentum of the putty compared to the rubber ball?
	 need more information makes no difference the putty ball 	Whichever has the greatest change in momentum would be the best one to topple the pin.

#	Problem	Hint
22	(part 1 of 4) A 33 kg gun is standing on a frictionless surface. The gun fires a 54.9 g bullet with a muzzle velocity of 310 m/s.	What equation defines momentum? $\rho = mv$
	The positive direction is that of the bullet. Calculate the momentum of the bullet immediately after the gun was fired. Answer in units of kg · m/s	Remember: Convert mass from g to kg.
23	(part 2 of 4) Calculate the momentum of the gun immediately after the gun was fired. Answer in units of kg · m/s	Momentum is conserved. So, what about the direction?
24	(part 3 of 4) Calculate the kinetic energy of the bullet immediately after the gun was fired. Answer in units of J	What equation defines kinetic energy? $E_k = \frac{1}{2} mv^2$
25	(part 4 of 4) Calculate the kinetic energy of the gun immediately after the gun was fired. Answer in units of J	Use the conservation of momentum to find the velocity of the gun. Then, use the equation in #24 to find the kinetic energy.
26	A(n) 19.8 g bullet is shot into a(n) 5236 g wooden block standing on a frictionless surface. The block, with the bullet in it, acquires a velocity of 1.93 m/s.	"The block with the bullet in it" means what about the mass?
	Calculate the velocity of the bullet before striking the block. Answer in units of m/s	What does the "frictionless" surface mean in the problem?
		What is conserved in the collision of the bullet and the block-bullet?
		Remember: $\rho_{\text{before}} = \rho_{\text{after}}$

#	Problem	Hint
27	Where is the fluid pressure the greatest? 1. 2 meters below the surface of a swimming pool. 2. 30 centimeters below the surface of a summing pool.	Review your notes or the text about fluid pressure.
	 3. 1 meter below the surface of a swimming pool. 4. The pressure is the same in all parts of a swimming pool. 	How does it change with depth?
28	(part 1 of 2) The force of friction acting on a sliding crate is 155 N. How much force must be applied to maintain	"Sliding" means dynamic (or kinetic) friction.
	a constant velocity? Answer in units of N	Constant Velocity means what about the forces?
29	(part 2 of 2) What will be the net force acting on the crate? Answer in units of N	Constant Velocity means what about the forces?
30	 A book rests on the shelf of a bookcase. The reaction force to the force of gravity acting on the book is 1. The force exerted by the book on the earth. 2. None of these. 3. The force of the shelf holding the book up. 4. The weight of the book. 5. The frictional force between book and shelf 	Newton's Third Law of Motion