Quest Chapter 08

#	Problem	Hint
1	What is a force exerted over a distance to move an object? 1. velocity 2. work 3. power 4. momentum	What is defined as a force acting over a distance?
2	If you exert a force of 20 N to lift a box a distance of 2.45 m, how much work do you do?	Substitute and solve using the work equation.
3	A catcher "gives" with a baseball when catching it. If the baseball exerts a force of 469 N on the glove such that the glove is displaced 9.26 cm, how much work is done by the ball?	Substitute and solve using the work equation.
4	A student weighing 672 N climbs at constant speed to the top of an 14 m vertical rope in 17s. What is the average power expended by the student to overcome gravity?	Substitute and solve to find the work. Then, substitute and solve to find the power.
5	What energy is produced by a 60W lightbulb lit for 2.6 hours?	Substitute and solve using the power equation.
6	Normally the rate at which you expend energy during a brisk walk is 3.5 calories per minute. (A calorie is the common unit of food energy, equal to 0.239 Joules.) How long do you have to walk in order to produce the same amount of energy as in a candy bar (approximately 280 cal)?	Hmmm. 3.5 cal per minute? That is a rate, isn't it? Set up your equation that uses the rate defined in the problem. Just how would you get 3.5 cal per minute? What would that look like in an equation.
7	Power equals work 1. divided by weight. 2. divided by time. 3. divided by distance. 4. times distance.	Use the definition of power when considering this question.
8	The unit of power is the 1. Joule. 2. Newton. 3. Coulomb. 4. Watt.	Check your notes or remember my overused joke.

#	Problem	Hint
9	Potential energy and kinetic energy are forms	Think of PE as the
	of what kind of energy?	"gravitational" type.
	1. Chemical 2. electromagnetic	3
	3 heat	Then consider the definition
	4. nuclear	
	5. mechanical	OF KE.
10	(part 1 of 2)	Be careful: The "either"
	A 500-N crate needs to be lifted 1 meter	answer refers to sliding or
	vertically in order to get it into the back of a	lifting
	What gives the crate a greater potential	inting.
	energy?	
	1. Either	Remember to consider the
	2. Unable to determine	end versus the beginning and
	3. slide it up a frictionless inclined plane	not how it got there.
	4. lift it straight up into the truck	3
11	(part 2 of 2) What is the advantage of using the inclined	If you need one, draw a
	vinal is the advantage of using the inclined	diagram of an inclined plane.
	1. less force	
	2. less distance	Review your notes or reread
	3. more power	the section in the text
	4. less total energy	
12	Suppose an automobile has a kinetic energy	How does a multiplication of
	Of 2200 J. When it may as with five times the aread	the velocity affect the KE?
	what will be its kinetic energy?	,
	Answer in units of J	Check you notes
13	What is the speed of a 0 149 kg baseball if its	Substitute and colve using the
10	kinetic energy is 107 J ?	
		KE equation.
14	A student wearing trictionless in-line skates	Frictionless means no
	with a constant force of 46 N	resistance to motion.
	How far must the student be pushed starting	
	from rest, so that her final kinetic energy	W=Ed
	is 351 J?	·· · G.
		KE = W if the work was
		completely converted to KF
		completely converted to KE.

#	Problem	Hint
15	A block sliding on a horizontal surface has an initial speed of 0.5 m/s. The block travels a distance of 1 m as it slows to a stop. What distance would the block have traveled if	How is the KE of the block at 0.5 m/s compared to 1.0 m/s?
	its initial speed had been 1 m/s?	How will that difference be
	1.1 m 2.3 m	played out as the surface
	3. 2 m	does work on the block?
	4. 4 m5. more information is needed to answer the question	Remember that the KE is
	6. 0.5 m	being completely converted to work.
16	(part 1 of 3) At what point in its motion is the KE of a	Check you notes.
	1. midway between the highest and lowest	When has its gravitational PE
	points	been completely converted to
	3. at the lowest point	KE?
	4. at the highest point	
17	(part 2 of 3) At what point is its PE a maximum?	Check you notes.
	1. The PE does not change.	
	2. at the highest point correct	when has its KE been
	4. midway between the highest and lowest	completely converted to
- 10	points	
18	(part 3 of 3) When its KE is half of its maximum value.	Remember that PE and KE
	how much PE does it have?	are being converted back and
	1. half of its maximum value	forth.
	3. its minimum value	
	4. the same as its PE at any other point.	
19	(part 1 of 2) Consider a ball thrown straight up in the air	Remember definition of KE.
	At what position is its kinetic energy a	
	maximum?	what is the changing when
	the highest point	the ball is thrown up in the
	2. the lowest point	air?
	3. the highest point	
	4. NE 15 CONSTAINT AT AIT POINTS.	

#	Problem	Hint
20	 (part 2 of 2) Where is its gravitational potential energy a maximum? 1. midway between the the lowest point and the highest point 2. the highest point 3. the lowest point 4. Potential energy is constant everywhere. 	Remember that PE and KE are being converted back and forth.
21	A 5.18 kg block initially at rest is pulled to the right along a horizontal, frictionless surface by a constant, horizontal force of 13.1 N. Find the speed of the block after it has moved 2.81 m. Answer in units of m/s	You have mass, force, and distance. You also have NO friction. You can find the work: W=Fd. Without friction, all the work goes into KE. So, W=Fd= $\frac{1}{2}$ mv ² . Find v.
22	(part 1 of 2) A mechanic pushes a(n) 3060 kg car from rest to a speed of v, doing 5337 J of work in the process. During this time, the car moves 22 m. Neglect friction between car and road. Find the speed v. Answer in units of m/s	You have mass, work, and distance. NO friction. Without friction, all the work goes into KE. So, W=Fd= ¹ / ₂ mv ² . Find v.
23	(part 2 of 2) Find the horizontal force exerted on the car. Answer in units of N	Use the work and distance to find the force.
24	A rock of mass m is thrown horizontally off a building from a height h. The speed of the rock as it leaves the thrower's hand at the edge of the building is vo, as shown. What is the kinetic energy of the rock just before it hits the ground?	Use the Work-Energy theorem: $W = \Delta E$. Remember: $\Delta = New - Old$
25	The fulcrum of which class lever is always between the effort force and the resistance force? 1. Third 2. None of these 3. First 4. Second	Check page 112 in the text.

#	Problem	Hint
26	 The mechanical advantage of a machine is the number of times it 1. multiplies the effort force. 2. changes the direction of the effort force. 3. changes the direction of the resistance force. 4. multiplies the resistance force. 	Remember definition of mechanical advantage.
27	If you have to apply 30 N of force on a crowbar to lift an object that weighs 330 N, what is the mechanical advantage of the crowbar? 1. 0.09 2. 110 3. 300 4. 11 5. 9900 6. 0.36	Remember definition of mechanical advantage.
28	 The mechanical advantage of a pulley system is equal to the 1. number of rope segments pulling up on the load. 2. length of the rope. 3. weight of the object being lifted. 4. distance the load has to be moved. 	Check you notes.
29	 Which property of a machine compares its work output with its work input? 1. mechanical advantage 2. energy 3. mechanical efficiency 4. ideal mechanical advantage 	Look for something in your notes or the book that relates work output to work input.